Nested Sampling for General Bayesian Computation
نویسنده
چکیده
Nested sampling estimates directly how the likelihood function relates to prior mass. The evidence (alternatively the marginal likelihood, marginal density of the data, or the prior predictive) is immediately obtained by summation. It is the prime result of the computation, and is accompanied by an estimate of numerical uncertainty. Samples from the posterior distribution are an optional byproduct, obtainable for any temperature. The method relies on sampling within a hard constraint on likelihood value, as opposed to the softened likelihood of annealing methods. Progress depends only on the shape of the “nested” contours of likelihood, and not on the likelihood values. This invariance (over monotonic relabelling) allows the method to deal with a class of phase-change problems which effectively defeat thermal annealing.
منابع مشابه
Nested sampling for Potts models
Nested sampling is a new Monte Carlo method by Skilling [1] intended for general Bayesian computation. Nested sampling provides a robust alternative to annealing-based methods for computing normalizing constants. It can also generate estimates of other quantities such as posterior expectations. The key technical requirement is an ability to draw samples uniformly from the prior subject to a con...
متن کاملUsing TPA for Bayesian inference — Discussion
Skilling (2007) previously identified that the number of steps required to reach a given set is Poisson distributed. Huber and Schott suggest making this special case central, recasting all computations as finding the mass of a distribution on a set. Additional contributions are a theoretical analysis, two general ways of reducing problems to the required form and a link to annealing. The resul...
متن کاملFast Bayesian Model Selection with Application to Large Locally-Nonlinear Dynamic Systems
Bayesian model selection chooses, based on measured data, using Bayes’ theorem, suitable mathematical models from a set of possible models. In structural analysis, linear models are often used to facilitate design and analysis, though they do not always accurately reproduce actual structural responses. When the models also require the inclusion of nonlinearity to improve accuracy, the computati...
متن کاملSYSBIONS: nested sampling for systems biology
MOTIVATION Model selection is a fundamental part of the scientific process in systems biology. Given a set of competing hypotheses, we routinely wish to choose the one that best explains the observed data. In the Bayesian framework, models are compared via Bayes factors (the ratio of evidences), where a model's evidence is the support given to the model by the data. A parallel interest is infer...
متن کاملExploring the energy landscapes of protein folding simulations with Bayesian computation.
Nested sampling is a Bayesian sampling technique developed to explore probability distributions localized in an exponentially small area of the parameter space. The algorithm provides both posterior samples and an estimate of the evidence (marginal likelihood) of the model. The nested sampling algorithm also provides an efficient way to calculate free energies and the expectation value of therm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006